Testis 1
Here I explore clustering using Seurat v2 for clustering.
Normalize Data
sobj <- FindVariableGenes(
sobj,
mean.function = ExpMean,
dispersion.function = LogVMR,
x.low.cutoff = 0.0125,
x.high.cutoff = 3,
y.cutoff = 0.5,
display.progress = FALSE
)
Scale Data
sobj <- ScaleData(
sobj,
vars.to.regress = "nUMI",
display.progress = FALSE
)Dimensionality Reduction
Dimensional Gene Loadings

Top Genes Heatmap

JackStraw

## An object of class seurat in project testis1
## 11575 genes across 2710 samples.
Elbow Plot

Dimension Selection
Clustering
## [1] "res.0.4: 9"
## [1] "res.0.5: 9"
## [1] "res.0.6: 9"
## [1] "res.0.7: 9"
## [1] "res.0.8: 13"
## [1] "res.0.9: 13"
## [1] "res.1: 13"
## [1] "res.1.1: 13"
## [1] "res.1.2: 15"


Look at marker genes
Spermatogonia


Spermatocytes


CySC


TE


PC


hub


Cluster Markers
| cluster | Number Markers Per Cluster |
|---|---|
| 0 | 245 |
| 1 | 218 |
| 2 | 1174 |
| 3 | 19 |
| 4 | 485 |
| 5 | 362 |
| 6 | 110 |
| 7 | 1008 |
| 8 | 930 |
| 9 | 966 |
| 10 | 570 |
| 11 | 1707 |
| 12 | 702 |
Top 12 Genes Per Cluster
Cluster 0

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Cluster 8

Cluster 9

Cluster 10

Cluster 11

Cluster 12
