Testis 1
Here I explore clustering using Seurat v2 for clustering.
Normalize Data
sobj <- FindVariableGenes(
sobj,
mean.function = ExpMean,
dispersion.function = LogVMR,
x.low.cutoff = 0.0125,
x.high.cutoff = 3,
y.cutoff = 0.5,
display.progress = FALSE
)

Scale Data
sobj <- ScaleData(
sobj,
vars.to.regress = "nUMI",
display.progress = FALSE
)
Dimensionality Reduction
Dimensional Gene Loadings

Top Genes Heatmap

JackStraw

## An object of class seurat in project testis1
## 11575 genes across 2710 samples.
Elbow Plot

Dimension Selection
Clustering
## [1] "res.0.4: 9"
## [1] "res.0.5: 9"
## [1] "res.0.6: 9"
## [1] "res.0.7: 9"
## [1] "res.0.8: 13"
## [1] "res.0.9: 13"
## [1] "res.1: 13"
## [1] "res.1.1: 13"
## [1] "res.1.2: 15"


Look at marker genes
Spermatogonia


Spermatocytes


CySC


TE
PC
hub
Cluster Markers
cluster | Number Markers Per Cluster |
---|---|
0 | 245 |
1 | 218 |
2 | 1174 |
3 | 19 |
4 | 485 |
5 | 362 |
6 | 110 |
7 | 1008 |
8 | 930 |
9 | 966 |
10 | 570 |
11 | 1707 |
12 | 702 |
Top 12 Genes Per Cluster
Cluster 0

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Cluster 8

Cluster 9

Cluster 10

Cluster 11

Cluster 12
